

VANE PUMP TYPE V3/12

Size 12

up to 10MPa

13 dm³/min

WK 414 501 04.1999r.

Vane pumps type PV serve to generate an oil flow in hydraulic systems.

ADVANTAGES

- easy commissioning by automatic air bleeding
- low noise level
- hydrodynamically lubricated bearings for long bearing life
- good sliding characteristics of control discs due to bronze coating and semi-fluid friction.

DESCRIPTION OF OPERATION

Hydraulic pumps type V3 are vane pumps with variable displacement and pressure control. Pumps type V3/12 are composed of a housing 1, rotor 2 with simple vanes 3, stator 4, pressure regulator 5, volume screw 6, valve for automatic air bleed 7 and control discs 9.

Suction and delivery

Two vanes 3, the rotor 2, the stator 4 and the discs 9 form the chambers for the transport of the fluid. By moving the rotor 2 to the right the chambers 8 increase, starting from the suction channel and they fill up with fluid. When these chambers have reached their maximum volume they are separated from the suction side by means of the control discs. When the rotor further turns to the right the chambers are connected to the pressure side. They decrease their volume and thus fluid is pushed to the pressure channel P and into the system. Volume setting screw 6 is designed for limiting the maximum flow of the pump.

Pressure setting

The circular stator ring is kept in an eccentric position by means of the spring 10. Maximum working pressure required in the system is adjusted by the spring 10. On reaching the set pressure the stator 4 (overcoming resistance of the spring 10) moves out of its eccentric position. The eccentricity decreases till the minimum flow replacing the leakage oil is obtained. After a pressure drop in the systam the stator 4 returns to the eccentric position and the pump delivers the full value of the set output flow.

Installation

Vane pumps type V3 can be installed in any desired position.

The pump may be connected to hydraulic systems only by means of flexible lines.

Drive

The pump may be connected to motor only by means of a flexible

coupling. All the coaxial conditions formulated by the coupling manufacturer must be maintained.

The shaft ends of both pump and motor may not transmit any longitudinal or radial forces.

Oil tank

The tank capacity must be properly selected so that the working temperature of oil do not exceed recommendations. If that is impossible a cooler must be installed.

Pipelines

The suction line should be designed so that the gives values of inlet pressure are not exceeded. The leakage lines should be fitted minimum 100 mm above the suction line and should be formed so that the leakages do not get immediately sucked back into the pump.

The suction lines and the leakage lines should be at least 200 mm apart. The pipe ends should be cut at a 45° angle and should not reach within 50 mm of the tank bottom.

All pipelines even at the minimum oil level in the tank must be dipped minimum 50 mm in order to avoid the build-up of foam.

TECHNICAL DATA

Hydraulic fluid		Mineral oil, phosphate ester
Nominal output flow Nominal output Nominal output flow	dm³/ min	13 at n = 1450 min ⁻¹ p = 1 MPa
Inlet pressure	MPa	- 0,02 to + 0,5
Outlet pressure	MPa	max. 10
Leakage pressure	MPa	max. 0,2
Torque (drive shaft)	Nm	max 54
Revolution per minute	min ⁻¹	1000 do 1800
Nominal viscosity range - at pzero stroke < 6.3 MPa - at pzero stroke > 6.3 MPa	mm²/ s mm²/ s	16 to 160 25 to 160
Working temperature (fluid in a tank)	К	313 - 328
Fluid temperature range	К	263 - 343
Filtration	μm	16 (recommended 10 for long working life
Pressure range related to spring force	MPa	C 25 from 1,2 to 2,5 C 40 from 2,0 to 4,0 C 63 from 3,0 to 6,3 C100 from 5,0 to 10,0
Mounting method		flange mounting
Direction		right
Pipe connections Pipe connections		threaded connections
Shaft loading		radial or axial loads can not be transferred
Weight	kg	6,25

OVERALL AND MOUNTING DIMENSIONS

Pump for flange mounting - overall dimensions in mm

- 3. Flow rate setting (by means of screw A)4. Pressure setting (by means of screw C)
- 5. Pressure port

- 12. Flow rate setting locked by key (S)
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm
- 15. 2-nd shaft end

Two - flange bracket - overall dimensions in mm

Power drive in kW	B1 ^{±0.2}	B2	D1 ^{H10}	D2 ^{±0.2}	D3	D4	D5	D6	H1 ^{±0.2}	H2	L1 ^{±0.2}	L2	L3	Weight
0,55 1,5	180	210	130	165	200	M10	11	18	112	15	102	60	15	3,5 kg
2,2 4	220	250	180	215	250	M12	14	20	132	15	112	60	20	4 kg

1 - Pump flange 2 - Motor flange

Note : Bracket and hand wheel available on a special order to be agreed with the manufacturer.

HOW TO ORDER Orders coded in the way showed below should be for	warded to the	manuf	acturer.			
1 PV2V3	/12	2	1			
Series number: 31 = 31 (30 - 39) - Installation and connection dimensions unchanged						
Nominal output flow - size 12 = 12 8.5 cm ³ /rev						
Rotation direction :						
Right Model with double shaft	= R = D					
Threaded connections	= 1					
Sealing For fluids on mineral oil base For fluids on phosphate ester base	= M = V					
Pressure setting With hexagon end screw With square end screw Lockable pressure regulator	= C = H = S					
Zero stroke pressure range 10 MPa zero stroke pressure 6.3 MPa zero stroke pressure 4.0 MPa zero stroke pressure 2.5 MPa zero stroke pressure	= 100 = 63 = 40 = 25					
Flow setting With hexagon end screw With square end screw Lockable flow regulator	= A = H = S					
Air bleed valve						
Additional requirements in clear text (to be agreed wit	h the manufa	cturer)		 	 	
Coding example : 1PV2V3-31/12 R1MC100A1						

PONAR WADOWICE S.A. ul. Wojska Polskiego 29 34-100 Wadowice tel. 033/ 823 39 43, 823 30 41 fax 033/ 873 48 80 e-maili: ponar@ponar-wadowice.pl

VANE PUMP TYPE V3/25

Size 25

up to 10MPa

25 dm³/min

Vane pumps type PV serve to generate an oil flow in hydraulic systems.

ADVANTAGES

- easy commissioning by automatic air bleeding
- low noise level
- hydrodynamically lubricated bearings for long bearing life
- good sliding characteristics of control discs due to bronze coating and semi-fluid friction.

DESCRIPTION OF OPERATION

Hydraulic pumps type V3 are vane pumps with variable displacement and pressure control. Pumps type V3/25 are composed of a housing 1, rotor 2 with simple vanes 3, stator 4, pressure regulator 5, volume screw 6, valve for automatic air bleed 7 and control discs 9.

Suction and delivery

Two vanes 3, the rotor 2, the stator 4 and the discs 9 form the chambers for the transport of the fluid. By moving the rotor 2 to the right the chambers 8 increase, starting from the suction channel and they fill up with fluid. When these chambers have reached their maximum volume they are separated from the suction side by means of the control discs. When the rotor further turns to the right the chambers are connected to the pressure side.

They decrease their volume and thus fluid is pushed to the pressure channel P and into the system. Volume setting screw 6 is designed for limiting the maximum flow of the pump.

Pressure setting

The circular stator ring is kept in an eccentric position by means of the spring 10. Maximum working pressure required in the system is adjusted by the spring 10. On reaching the set pressure the stator 4 (overcoming resistance of the spring 10) moves out of its eccentric position. The eccentricity decreases till the minimum flow replacing the leakage oil is obtained. After a pressure drop in the systam the stator 4 returns to the eccentric position and the pump delivers the full value of the set output flow.

Installation

Vane pumps type V3 can be installed in any desired position.

The pump may be connected to hydraulic systems only by means of flexible lines.

Drive

The pump may be connected to motor only by means of a flexible

coupling. All the coaxial conditions formulated by the coupling manufacturer must be maintained.

The shaft ends of both pump and motor may not transmit any longitudinal or radial forces.

Oil tank

The tank capacity must be properly selected so that the working temperature of oil do not exceed recommendations. If that is impossible a cooler must be installed.

TECHNICAL DATA

Pipelines

The suction line should be designed so that the gives values of inlet pressure are not exceeded. The leakage lines should be fitted minimum 100 mm above the suction line and should be formed so that the leakages do not get immediately sucked back into the pump.

The suction lines and the leakage lines should be at least 200 mm apart. The pipe ends should be cut at a 45° angle and should not reach within 50 mm of the tank bottom.

All pipelines even at the minimum oil level in the tank must be dipped minimum 50 mm in order to avoid the build-up of foam.

Hydraulic fluid		Mineral oil, phosphate ester
Nominal output flow	dm ³ / min	13 at n = 1450 min ⁻¹ p = 1 MPa
Inlet pressure	MPa	- 0,02 to + 0,5
Outlet pressure	MPa	max. 10
Leakage pressure	MPa	max. 0,2
Torque (drive shaft)	Nm	max 61,8
Revolution per minute	min ⁻¹	1000 do 1800
Nominal viscosity range - at pzero stroke < 6.3 MPa - at pzero stroke > 6.3 MPa	mm²/ s mm²/ s	16 to 160 25 to 160
Working temperature (fluid in a tank)	К	313 - 328
Fluid temperature range	К	263 - 343
Filtration	μm	16 (recommended 10 for long working life)
Pressure range related to spring force	MPa	C 25 from 1,2 to 2,5 C 40 from 2,0 to 4,0 C 63 from 3,0 to 6,3 C100 from 5,0 to 10,0
Mounting method		flange mounting
Direction		right
Pipe connections		threaded connections
Shaft loading		radial or axial loads can not be transferred
Weight	kg	6,25

OVERALL AND MOUNTING DIMENSIONS

Pump for subplate mounting - overall dimensions in mm

- 1. Flow rate setting
 - rotation to the right decreases flow rate
 - rotation to the left increases flow rate
- 2. Pressure setting
 - rotation to the right increases operating pressure
 - rotation to the left decreases operating pressure
- 3. Flow rate setting (by means of screw A)
- 4. Pressure setting (by means of screw C)
- 5. Pressure port
- 6. Leakage port
- 7. Suction port
- 8. Drive shaft for model with right rotation.

9. Accessories (against special order and agreed with the manufacturer). Setting by means of hand wheel fitted on square end setting

- 10. Flow rate setting by means of external square end (H)
- 11. Pressure setting by means of external square end (H)
- 12. Flow rate setting locked by key (S)
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm
- 15. Interface
- 16. Drive shaft for model with left rotation
- 17. 2-nd shaft end for model 1 PV...V3...D
- 18. O-ring 23.5 × 2.6
- 19. O-ring 12.4 × 2.6

OVERALL AND MOUNTING DIMENSIONS

Pump for flange mounting - overall dimensions in mm

- 1. Flow rate setting
 - rotation to the right decreases flow rate
 - rotation to the left increases flow rate
- 2. Pressure setting
 - rotation to the right increases operating pressure
 - rotation to the left decreases operating pressure
- 3. Flow rate setting (by means of screw A)
- 4. Pressure setting (by means of screw C) $% \left({{\left({{{C_{c}}} \right)}} \right)$
- 5. Pressure port
- 6. Leakage port
- 7. Suction port

- 8. Drive shaft for model with right rotation
- 9. Accessories (against special order and agreed with the manufacturer). Setting by means of hand wheel fitted on square end setting
- 10. Flow rate setting by means of external square end (${\rm H}$)
- 11. Pressure setting by means of external square end (H)
- 12. Flow rate setting locked by key (S)
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm
- 15. 2-nd shaft end for model 1 PV...V3...D

PERFORMANCE CURVES : measured at $v = 41 \text{ mm}^2/\text{s}$ and T = 323 K and n = 1450 min⁻¹

28 24 6 C100 0 (dm³/ min) 10 (dm³/ min) 12 0 8 5 4 (MX) 3 d robocz 8 2 ja³ow y 4 1 4 6 p (MPa) 0 2 8 10

Leakage - operating pressure curve

Noise level - operating pressure curves at zero stroke and delivering, measured at distance of 1 m from pump.

- 1 noise level when delivering
- 2 noise level at zero stroke

OVERALL AND CONNECTION DIMENSIONS FOR BRACKETS

Single - flange bracket - overall dimensions in mm

Overall dimensions for single-flange mounting bracket related to motor size.

Drive power in kW	B1	B2	B3 ±0.2	D1	D2	D3	H1	H2 ^{±0.2}	H3	H4	L1	L2 ^{±0.2}	L3 ^{±0.2}	Weight
1,1 1,5	35	210	185	9	15	6+0,1	15	80	90	157	93	48	55	2,5 kg
2,2 3	35	210	185	9	15	6+0,1	25	80	100	167	93	48	55	3,7 kg
4	35	210	185	9	15	6+0,1	37	80	112	179	93	48	55	4 kg
5,5 7,5	46	276	230	14	20	8+0,1	15	128	132	212	113	58	80	6,4 kg

Subplate - overall dimensions in mm

1 - drive shaft of pump

Drive power in kW	H1 ^{±0.1}	H2	Mass
1.11.5	36	90	2 kg
2.25.5	46	100	2.2 kg

Two-flanged bracket

- 1. Pump flange
- 2. Motor flange

Drive power in kW	B1 ^{±0.2}	B2	D1 ^{H10}	D2 ^{±0.2}	D3	D4	D5	D6	H1 ^{±0.2}	H2	L1 ^{±0.2}	L2	L3	Weight
0.551.5	180	210	130	165	200	M10	11	18	112	14	102	60	15	2.8 kg
2.24	220	250	180	215	250	M12	14	20	132	14	112	60	20	4 kg
5.57.5	260	290	230	265	304	M12	14	20	160	14	132	80	20	5.5 kg

HOW TO ORDER

Orders coded in the way showed below should be forwarded to the manufacturer.

Mounting method Flange = 2 Subplate = 6 Series number 30 30 = 30 (30 - 39) - Installation and connection dimensions unchanged Rotation direction : Right = R Left = L Model with double shaft = D Connection method Threaded connections = 1 Subplate = 8 Sealing For fluids on mineral oil base = M For fluids on phosphate ester base = V Pressure setting = 1 With square end screw = H Lockable pressure regulator = S Zero stroke pressure = 63 40 MPa zero stroke pressure = 63 2.5 MPa zero stroke pressure = 8 With square end screw = H Lockable flow regulator = S Flow setting = 40 2.5 MPa zero stroke pressure = 83 40 HPa zero stroke pressure = S Additional requirements in clear text (to be agreed with the manufacturer)	1 PV		V3-	_	25							1	*
Mounting method Flange = 2 Subplate = 6 Series number 30 = 39 - Installation and connection dimensions unchanged Rotation direction : Right = L Left = L Model with double shat Subplate = 8 Connection method Threaded connections = 1 Subplate = 8 Subplate = 8 Sealing For fluids on mineral oil base = M For fluids on moreal oil base = V Pressure setting With havagon end screw = K Lockabe pressure range 10 MPa zero stroke pressure source = 63 4.0 MPa zero stroke pressure = 40 2.5 MPa zero stroke pressure = 25 Flow setting With havagon end screw = H Lockabe flow regulator = S Image end screw = 40 2.5 MPa zero stroke pressure = 25 Flow setting With havagon end screw = H Lockabe flow regulator = S Air bleed valve 1 Arbited valve 1 Additional requirements in clear text (to be agreed with the manufacturer) oding example :			•							•			Τ
Series number = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 30 = 30 Right = R Left = L Model with double shaft = D Connection method	Mounting method Flange = 2 Subplate = 6												
Rotation direction : = Right = Left = Model with double shaft = D	Series number 30 (30 - 39) - Installation an dimensions unchanged	= d conn	30 lection										
Connection method Threaded connections = 1 Subplate = 8 Sealing For fluids on mineral oil base = M For fluids on phosphate ester base = V Pressure setting With hexagon end screw = C With square end screw = H Lockable pressure range 1000 10 MPa zero stroke pressure = 63 4.0 MPa zero stroke pressure = 63 4.0 MPa zero stroke pressure = 40 2.5 MPa zero stroke pressure = 25 Flow setting With hexagon end screw = A With square end screw = A Lockable flow regulator = S Air bleed valve 1 Additional requirements in clear text (to be agreed with the manufacturer) 1 oding example : 1PV2V3-20/25 R1MC100A1	Rotation direction : Right Left Model with double shaft				= R = L = D								
Sealing For fluids on mineral oil base = M For fluids on phosphate ester base = V Pressure setting With hexagon end screw = C With square end screw = H Lockable pressure regulator = S Zero stroke pressure range 100 10 MPa zero stroke pressure = 63 4.0 MPa zero stroke pressure = 40 2.5 MPa zero stroke pressure = 25 Flow setting	Connection method Threaded connections Subplate			=	1								
Pressure setting With hexagon end screw = C With square end screw = H Lockable pressure regulator = S Zero stroke pressure range 100 10 MPa zero stroke pressure ange = 100 6.3 MPa zero stroke pressure = 63 4.0 MPa zero stroke pressure = 40 2.5 MPa zero stroke pressure = 25 Flow setting With hexagon end screw = A With square end screw = H Lockable flow regulator = S Air bleed valve 1 Additional requirements in clear text (to be agreed with the manufacturer) 1 oding example : 1PV2V3-20/25 R1MC100A1	Sealing For fluids on mineral oil ba For fluids on phosphate es	se ter bas	se			= N = V	/ /						
Zero stroke pressure range 10 MPa zero stroke pressure 6.3 MPa zero stroke pressure a.0 MPa zero stroke pressure a.1 Flow setting With square end screw a.1 Air bleed valve 1 Additional requirements in clear text (to be agreed with the manufacturer) oding example : 1PV2V3-20/25 R1MC100A1	Pressure setting With hexagon end screw With square end screw Lockable pressure regulato	r				= = =	C H S						
Flow setting With hexagon end screw = A With square end screw = H Lockable flow regulator = S Air bleed valve 1 Additional requirements in clear text (to be agreed with the manufacturer) oding example : 1PV2V3-20/25 R1MC100A1	Zero stroke pressure 10 MPa zero stroke pressu 6.3 MPa zero stroke pressu 4.0 MPa zero stroke pressu 2.5 MPa zero stroke pressu	range re ire ire ire)			= = =	100 63 40 25						
Air bleed valve 1 Additional requirements in clear text (to be agreed with the manufacturer) oding example : 1PV2V3-20/25 R1MC100A1	Flow setting With hexagon end screw With square end screw Lockable flow regulator					= = =	A H S						
Additional requirements in clear text(to be agreed with the manufacturer) oding example: 1PV2V3-20/25 R1MC100A1	Air bleed valve										1		
oding example: 1PV2V3-20/25 R1MC100A1	Additional requirements in	clear t	ext(to	be	agreed wit	h the	mai	nufac	turer)			
	oding example : 1PV2V3-2	20/25 R	1MC10	0 A	1								

PONAR WADOWICE S.A. ul. Wojska Polskiego 29 34-100 Wadowice tel. 033/ 823 39 43, 823 30 41 fax 033/ 873 48 80 e-mail: ponar@ponar-wadowice.pl

VANE PUMP TYPE V3/40

NG40

do 10 MPa

40 dm³/min

Vane pumps type PV serve to generate an oil flow in hydraulic systems.

ADVANTAGES

- easy commissioning by automatic air bleeding
- low noise level
- hydrodynamically lubricated bearings for long bearing life
 good sliding characteristics of control discs due to bronze
- coating and semi-fluid friction.

DESCRIPTION OF OPERATION

Hydraulic pumps type V3 are vane pumps with variable displacement and pressure control. Pumps type V3/40 are composed of a housing 1, rotor 2 with simple vanes 3, stator 4, pressure regulator 5, volume screw 6, valve for automatic air bleed 7 and control discs 9.

Suction and delivery

Two vanes 3, the rotor 2, the stator 4 and the discs 9 form the chambers for the transport of the fluid. By moving the rotor 2 to the right the chambers 8 increase, starting from the suction channel and they fill up with fluid. When these chambers have reached their maximum volume they are separated from the suction side by means of the control discs. When the rotor further turns to the right the chambers are connected to the pressure side. They decrease their volume and thus fluid is pushed to the pressure channel P and into the system. Volume setting screw 6 is designed for limiting the maximum flow of the pump.

Pressure setting

The circular stator ring is kept in an eccentric position by means of the spring 10. Maximum working pressure required in the system is adjusted by the spring 10. On reaching the set pressure the stator 4 (overcoming resistance of the spring 10) moves out of its eccentric position. The eccentricity decreases till the minimum flow replacing the leakage oil is obtained. After a pressure drop in the systam the stator 4 returns to the eccentric position and the pump delivers the full value of the set output flow.

Installation

Vane pumps type V3 can be installed in any desired position. The pump may be connected to hydraulic systems only by means of flexible lines.

Drive

The pump may be connected to motor only by means of a flexible coupling. All the coaxial conditions formulated by the coupling manufacturer must be maintained. The shaft ends of both pump and motor may not transmit any longitudinal or radial forces.

Oil tank

The tank capacity must be properly selected so that the working temperature of oil do not exceed recommendations. If that is impossible a cooler must be installed.

Pipelines

The suction line should be designed so that the gives values of inlet pressure are not exceeded. The leakage lines should be fitted minimum 100 mm above the suction line and should be formed so that the leakages do not get immediately sucked back into the pump.

The suction lines and the leakage lines should be at least 200 mm apart. The pipe ends should be cut at a 45° angle and should not reach within 50 mm of the tank bottom.

All pipelines even at the minimum oil level in the tank must be dipped minimum 50 mm in order to avoid the build-up of foam.

	Mineral oil, phosphate ester					
dm³/ min	47 at n = 1450 min ⁻¹ p = 1 MPa					
MPa	- 0,02 to + 0,5					
MPa	max. 10					
MPa	max. 0,2					
Nm	max 235					
min ⁻¹	1000 do 1800					
mm²/ s mm²/ s	16 to 160 25 to 160					
к	313 - 328					
к	263 - 343					
μm	16 (recommended 10 for long working life)					
MPa	C 25 from 1,2 to 2,5 C 40 from 2,0 to 4,0 C 63 from 3,0 to 6,3 C100 from 5,0 to 10,0					
	flange mounting					
	right					
	threaded connections					
	radial or axial loads can not be transferred					
kg	26,5					
	dm ³ / min MPa MPa MPa MPa Nm min ⁻¹ mm ² / s K K K K K μm MPa MPa					

TECHNICAL DATA

OVERALL AND MOUNTING DIMENSIONS

Pump for subplate mounting overall dimensions in mm

- 1. Flow rate setting
 - rotation to the right decreases flow rate
 - rotation to the left increases flow rate
- 2. Pressure setting
 - rotation to the right increases operating pressure
 - rotation to the left decreases operating pressure
- 3. Flow rate setting (by means of screw A)
- 4. Pressure setting (by means of screw C)
- 5. Pressure port
- 6. Leakage port
- 7. Suction port
- 8. Drive shaft for model with right rotation

- 9. Accessories (against special order and agreed with themanufacturer). Setting by means of hand wheel fitted on square end setting
- 10. Flow rate setting by means of external square end (H)
- 11. Pressure setting by means of external square end (H)
- 12. Flow rate setting locked by key (S)
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm
- 15. Interface
- 16. Drive shaft for model with left rotation
- 17. 2-nd shaft end for model 1PV...V3...D
- 18. O-ring 39.3 × 2.6
- 19. O-ring 15.6 × 2.6
- 20. O-ring 29.8 × 2.6

OVERALL AND MOUNTING DIMENSIONS

Pump for flange mounting - overall dimensions in mm

- 1. Flow rate setting
 - rotation to the right decreases flow rate
 - rotation to the left increases flow rate
- 2. Pressure setting
 - rotation to the right increases operating pressure
 - rotation to the left decreases operating pressure
- 3. Flow rate setting (by means of screw $\ensuremath{\mathsf{A}}$)
- 4. Pressure setting (by means of screw C) $% \left({{{\mathbf{C}}_{\mathbf{r}}}} \right)$
- 5. Pressure port
- 6. Leakage port
- 7. Suction port

- 8. Drive shaft for model with right rotation
- 9. Accessories (against special order and agreed with the manufacturer). Setting by means of hand wheel fitted on square end setting
- 10. Flow rate setting by means of external square end (H)
- 11. Pressure setting by means of external square end (H)
- 12. Flow rate setting locked by key (S)
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm
- 15. 2-nd shaft end for model 1PV...V3...D

PERFORMANCE CURVES : measured at $v = 41 \text{ mm}^2/\text{s}$ and T = 323 K and n = 1450 min⁻¹

Overall dimensions for single-flange bracket related to motor size

Drive power in kW	H1	H2	H3
5,5 7,5	15	132 ±0,2	207
11 15	43	160 ±0,2	235
18,5 22	63	180 ±0,2	255

Subplate - overall dimensions in mm

WK 144 618

Two-flange bracket - overall dimensions

년 **#0**5

- 1- pump flange 2. motor flange

Drive power in kW	B1 ^{±0.2}	B2	D1	D2	D3	H1	L1	L2	L3	Weight
2,2 4	220	250	180H10	215	250	132	122	60	42	4 kg
5,5 7,5	260	290	230H10	265	304	160	142	80	32	5,5 kg

HOW TO ORDER

Orders coded in the way showed below should be forwarded to the manufacturer.

1 PV	V3-	/40				*
Mounting method Flange = 2 Subplate = 6						
Series number 20 (20 - 29) - Installation au dimensions unchanged	= 20 nd connection					
Rotation direction : Right Left Model with double shaft	-	= R = L = D				
Connection method Threaded connections Subplate		= 1 = 8				
Sealing For fluids on mineral oil b For fluids on phosphate e	ase ster base	= M = V				
Pressure setting With hexagon end screw With square end scr Lockable pressure regula	tor	= C = H = S				
Zero stroke pressure 10 MPa zero stroke press 6.3 MPa zero stroke press 4.0 MPa zero stroke press 2.5 MPa zero stroke press	e range sure = 100 sure = 63 sure = 40 sure = 25					
Flow setting With hexagon end screw With square end screw Lockable flow regulator	= A = H = S					
Air bleed valve	= 1]
Additional requirements in c	lear text (to be a	agreed with th	e manufacture	.)		
Coding example : 1PV2V3	8-20/40R1MC10	0A1				
		PONAR W ul. Wojsk 34- tel. 033/ 823 39 fax 0 e-mail: ponar@pona	ADOWICE S.A. a Polskiego 29 100 Wadowice 9 43, 823 30 41 33/ 873 48 80 r-wadowice.pl	6	P wa	

VANE PUMP TYPE V3/63

Size 63

up to 10MPa 63 dm³/min

WK 144 619 04. 2001r.

Vane pumps type PV serve to generate an oil flow in hydraulic systems.

ADVANTAGES

- easy commissioning by automatic air bleeding
- low noise level
- hydrodynamically lubricated bearings for long bearing life
- good sliding characteristics of control discs due to bronze coating and semi-fluid friction.

DESCRIPTION OF OPERATION

Hydraulic pumps type V3 are vane pumps with variable displacement and pressure control. Pumps type V3/63 are composed of a housing 1, rotor 2 with simple vanes 3, stator 4, pressure regulator 5, volume screw 6, valve for automatic air bleed 7 and control discs 9.

Suction and delivery

Two vanes 3, the rotor 2, the stator 4 and the discs 9 form the chambers for the transport of the fluid. By moving the rotor 2 to the right the chambers 8 increase, starting from the suction channel and they fill up with fluid. When these chambers have reached their maximum volume they are separated from the suction side by means of the control discs. When the rotor further turns to the right the chambers are connected to the pressure side. They decrease their volume and thus fluid is pushed to the pressure channel P and into the system. Volume setting screw 6 is designed for limiting the maximum flow of the pump.

Pressure setting

The circular stator ring is kept in an eccentric position by means of the spring 10. Maximum working pressure required in the system is adjusted by the spring 10. On reaching the set pressure the stator 4 (overcoming resistance of the spring 10) moves out of its eccentric position. The eccentricity decreases till the minimum flow replacing the leakage oil is obtained. After a pressure drop in the systam the stator 4 returns to the eccentric position and the pump delivers the full value of the set output flow.

Installation

Vane pumps type V3 can be installed in any desired position. The pump may be connected to hydraulic systems only by means of flexible lines.

TECHNICAL DATA

Drive

The pump may be connected to motor only by means of a flexible coupling. All the coaxial conditions formulated by the coupling manufacturer must be maintained. The shaft ends of both pump and motor may not transmit any longitudinal or radial forces.

Oil tank

The tank capacity must be properly selected so that the working temperature of oil do not exceed recommendations. If that is impossible a cooler must be installed.

Pipelines

The suction line should be designed so that the gives values of inlet pressure are not exceeded. The leakage lines should be fitted minimum 100 mm above the suction line and should be formed so that the leakages do not get immediately sucked back into the pump.

The suction lines and the leakage lines should be at least 200 mm apart. The pipe ends should be cut at a 45° angle and should not reach within 50 mm of the tank bottom.

All pipelines even at the minimum oil level in the tank must be dipped minimum 50 mm in order to avoid the build-up of foam.

Hydraulic fluid		Mineral oil, phosphate ester
Nominal output flow	dm³/min	67 at n = 1450 min ⁻¹ p = 1 MPa
Inlet pressure	MPa	- 0.02 to + 0.5
Outlet pressure	MPa	max 10
Leakage pressure	MPa	max 0.2
Torque (drive shaft)	Nm	max 353
Revolution per minute	min -1	1000 to 1 800
Nominal viscosity range - at p _{zero stroke} < 6.3 MPa - at p _{zero stroke} > 6.3 MPa	mm²/s mm²/s	16 to 160 25 to 160
Working temperature (fluid in a tank)	К	313 - 328
Fluid temperature range	к	263 - 343
Filtration	μm	16 (recommended 10 for long working life)
Pressure range related to spring force	MPa	C 25 from 1.2 to 2.5 C 40 from 2.0 to 4.0 C 63 from 3.0 to 6.3 C 100 from 5.0 to 10.0
Rotation direction		right (or left for 1 PV6 only)
Mounting method		flange or subplate mounting
Pipe connections		threaded connections
Shaft loading		radial or axial loads can not be transferred
Weight	kg	29.5 (1 PV2), 30.5 (1 PV6)

OVERALL AND MOUNTING DIMENSIONS

Pump for subplate mounting - overall dimensions in mm

- 1. Flow rate setting
 - rotation to the right decreases flow rate
 - rotation to the left increases flow rate
- 2. Pressure setting
 - rotation to the right increases operating pressure
 rotation to the left decreases operating pressure
- 3. Flow rate setting (by means of screw A)
- 4. Pressure setting (by means of screw C)
- 5. Pressure port
- 6. Leakage port
- 7. Suction port
- 8. Drive shaft for model with right rotation

- Accessories (against special order and agreed with the manufacturer). Setting by means of hand wheel fitted on square end setting
- 10. Flow rate setting by means of external square end (H)
- 11. Pressure setting by means of external square end (H)
- 12. Flow rate setting locked by key (S)
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm
- 15. Interface
- 16. Drive shaft for model with left rotation
- 17. 2-nd shaft end for model 1PV...V3...D
- 18. O-ring $~44.1 \times ~2.6$
- 19. O-ring 15.6 × 2.6
- 20. O-ring 34.6 × 2.6

- 1. Flow rate setting
 - rotation to the right decreases flow rate
 - rotation to the left increases flow rate
- 2. Pressure setting
 - rotation to the right increases operating pressure
 - rotation to the left decreases operating pressure
- 3. Flow rate setting (by means of screw A)
- 4. Pressure setting (by means of screw C)
- 5. Pressure port
- 6. Leakage port
- 7. Suction port

- 8. Drive shaft for model with right rotation
- 9. Accessories (against special order and agreed with the manufacturer). Setting by means of hand wheel fitted on square end setting
- 10. Flow rate setting by means of external square end (${\rm H}$)
- 11. Pressure setting by means of external square end (${\sf H}$)
- 12. Flow rate setting locked by key (S) $\,$
- 13. Pressure setting locked by key (S)
- 14. Key length 43 mm 15. 2-nd shaft end

1 - pump side

2 - motor side

Motor power in kW	Weight
11 15	10 kg

Subplate - overall dimensions in mm

1 - pump face

Single-flange bracket - overall dimensions in mm

1 - pump side

Overall dimensions for single-flange bracket related to motor size

Drive power in kW	H1	H2 ^{±0.2}	НЗ			
5.57.5	15	132	207			
1115	43	160	235			
18.522	63	180	255			

PERFORMANCE CURVES : measured at $v = 41 \text{ mm}^2/\text{s}$ and T = 323 K and n = 1450 min⁻¹

Flow - operating pressure - drive power curves for delivering and zero stroke.

0

2

4 6 p (MPa) 8

10

Noise level - operating pressure curves at zero stroke and delivering, measured at distance of 1 m from pump.

HOW TO ORDER

Orders coded in the way showed below should be forwarded to the manufacturer.

1 PV		V3-	 	/63							1	*
Mounting method Flange = 2 Subplate = 6				-								
Series number 20 (20 - 29) - Installation and dimensions unchanged	= 2 conne	0 ction										
Rotation direction : Right Left Model with double shaft		=	= R = L = D									
Connection method Threaded connections Subplate			= 1 = 8									
Sealing For fluids on mineral oil bas For fluids on phosphate est	e er bas	e			= M = V							
Pressure setting With hexagon end screw With square end screw Lockable pressure regulato	r				= = =	C H S						
Zero stroke pressure 10 MPa zero stroke pressu 6.3 MPa zero stroke pressu 4.0 MPa zero stroke pressu 2.5 MPa zero stroke pressu	range re ire ire ire	9			= = =	100 63 40 25						
Flow setting With hexagon end screw With square end screw Lockable flow regulator					= = =	A H S						
Air bleed valve												
Additional requirements in	clear 1	text(to	o be a	agreed w	vith the	man	ufactu	urer)			
Coding example : 1PV2V3-2	0/63 F	1MC1	00A1									I

PONAR WADOWICE S.A. ul. Wojska Polskiego 29 34-100 Wadowice tel. 033/ 823 39 43, 823 30 41 fax 033/ 873 48 80 e-mail: ponar@ponar-wadowice.pl

up to 10 MPa

04.1999r.

The pump combination V3 + V3 is composed of two variable displacement vane pumps.

The front pump is flange or subplate mounted. Both pumps are driven from one common shaft. Their delivery flow var-ies from Q = 0 to Q max as required by the user. Variable flow displacement is gained by means of the pressure compen-sator. Because of this, loss of power in the circuit is kept to a minimum.

For further details on the individual pumps see the data cards of pumps V3.

HOW TO ORDER

Orders for pumps coded as below should be placed at the manufacturer.

Front pump	1 PV		V3		/	R	E				1
+ Rear pump	1 PV	2	V3		/	R	G	1			1
Mounting :Flange= 2Subplate= 6											
Series number : for V3/12 i 25 (30 - 39 for V3/40 i 63 (20 - 29	Connection 9) dimensio 9) unct	and ins ons rer nanged	stalation main	n							
Pump combination WN12 + WN12 WN25 + WN12 WN25 + WN25 WN40 + WN25 WN40 + WN25	n :		140 + V 163 + V 163 + V 163 + V 163 + V	VN40 VN12 VN25 VN40 VN63							
Connection : Threads Subplate		=	= 1 = 8								
Sealing : For mineral oils For phosphate ester		=	= M = V								
Pressure setting Pressure controller - Pressure controller - Lockable pressure c	: hexagonal head squa re head so ontroller	d screw crew	I				= (= + = S	2			
Zero stroke press Zero stroke pressure Zero stroke pressure Zero stroke pressure Zero stroke pressure	ure range : e range e range e range e range e range	10 6 4 2	0,0 MPa ,3 MPa ,0 MPa ,5 MPa	a			= 1 = 6 = 4 = 2	00 3 0 5			
Flow setting : Adjustment screw - Adjustment screw - Lockable adjustment	hexagonal head square head scr t screw	screw					= A = H = S	\ ;			

The coding of pump combination comprises two individual designations joined by a sign "+". Letter "E" is added to the designation of a front pump and letter "G" to the designation of a rear pump.

CODING EXAMBLE 1 PV2V3-30/25RE1MC100A1 + 1 PV2V3-30/12RG1MC63A1 For further details on single pumps see corresponding data cards: PV3/12- WK 414/ 501 PV3/25 - WK 409/073 PV3/40 - WK 144/618 PV3/63 - WK144/619

PONAR WADOWICE S.A. Ul. Wojska Polskiego 29 34-100 Wadowice tel. 033/ 823 39 43, 823 30 41 fax 033/ 873 48 80 e-mail: ponar@ponar-wadowice.pl